

Computer Modelling Techniques

Numerical Methods Lecture 5: Numerical Integration

Mirco Magnini

 $\mathcal{L}_{\mathcal{A}}$

University of Nottingham Why do we need numerical integration? I CHINA | MAI AYSIA

For instance, we want to know the volumetric flow rate Q exiting a pipe:

iò

-
-

Numerical Methods – L5 Today's menu Trapezoidal rule Simpson's rule Mottingham

Nottingham

Numerical Methods — L5

Today's menu

> Trapezoidal rule

> Simpson's rule

> Gaussian quadrature

Expected outcome: know how to perform numeric

-
-
-

Expected outcome: **Numerical Methods – L5**

Foday's menu

Frapezoidal rule

Frapezoidal rule

Simpson's rule

Expected outcome: know how to perform numerical integration of functions;

Know advantages/limitations of each m Today's menu

→ Trapezoidal rule

→ Simpson's rule

→ Gaussian quadrature

Expected outcome: know how to perform numerical integration of functions;

know advantages/limitations of each method; know how to implement each

method.

University of
Nottingham 情 Numerical integration **CHINA | MALAYSIA**

Our task:

4

Trapezoidal rule

We perform *n* function evaluations at discrete points $x_1 \equiv a, x_2, x_3, ..., x_n \equiv b$. We divide [a,b] into $n-1$ segments, each segment containing two consecutive function evaluations. Within each segment, we approximate the fu $\begin{array}{ll}\n\text{Noting than} & \text{Trapezoidal rule} \\
\text{Noting than} & \text{Trapezoidal rule}\n\end{array}$

We perform *n* function evaluations at discrete points $x_1 \equiv a, x_2, x_3, ..., x_n \equiv b$. We divide [a,b] into $n - 1$ segments, each segment containing two consecutive function Subversity of
Nottingham
We perform *n* function evaluations at discrete points $x_1 \equiv a, x_2, x_3, ..., x_n \equiv b$. We divide [a,b] into
 $n-1$ segments, each segment containing two consecutive function evaluations. Within each
segme **SET Area of the area of the trapezonical as the area of the trapezium bounded between the straight line and the x-axis:
** $I_1 = \int_{-\infty}^{x_2} f(x) dx \approx \frac{1}{2} [f(x_1) + f(x_2)](x_2 - x_1)$ We perform *n* function evaluations at discrete points $x_1 \equiv a, x_2, x_3, ..., x_n \equiv b$. We divide [a,b] into $a-1$ segments, each segment containing two consecutive function evaluations. Within each segment we approximate the fun

$$
I_1 = \int_{x_1}^{x_2} f(x)dx \approx \frac{1}{2} [f(x_1) + f(x_2)](x_2 - x_1)
$$

Simpson's rule

The curve is now approximated by a **parabola** evaluated at 3 **points**, instead of a straight line.
The integral of the function between three consecutive points is:
 x_3 **Simpson's rule**
The curve is now approximated by a **parabola** evaluated at **3 points**, instead of a straight line.
The integral of the function between three consecutive points is:
 $I_1 = \int_{1}^{x_3} f(x) dx \approx \frac{h}{2} [f(x_1) + 4f(x$ **Example 11**

The curve is now approximated by a **parabola** evaluated at 3 points, instead of a straight line.

The integral of the function between three consecutive points is:
 $I_1 = \int_{x_1}^{x_3} f(x) dx \approx \frac{h}{3} [f(x_1) + 4f(x_$

$$
I_1 = \int_{x_1}^{x_3} f(x)dx \cong \frac{h}{3} [f(x_1) + 4f(x_2) + f(x_3)]
$$

The curve is now approximated by a **parabola** evaluated at 3 points, instead of a straight line.
\nThe integral of the function between three consecutive points is:
\n
$$
I_1 = \int_{x_1}^{x_3} f(x) dx \approx \frac{h}{3} [f(x_1) + 4f(x_2) + f(x_3)]
$$
\nwhere $h \equiv (b-a)/(n-1)$. With *n* function evaluations, the integral becomes a series of terms:
\n
$$
I = \int_{a=x_1}^{b=x_n} f(x) dx \approx \frac{h}{3} [f(x_1) + 4f(x_2) + 2f(x_3) + 4f(x_4) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] =
$$
\n
$$
= \frac{h}{3} \left[f(x_1) + \sum_{\substack{i=2, \\ i:even \\ i:odd}}^{n-1} 4f(x_i) + \sum_{\substack{i=3, \\ i:odd \\ i:odd}}^{n-2} 2f(x_i) + f(x_n) \right]
$$
\nIf (x) $f(x_1) = \int_{x_1}^{x_2} f(x_1) dx$

Gaussian quadrature

We have seen that the numerical calculation of an integral can be generalised as a **series** of
function evaluations:
 $I = \int_{0}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i$

**1 University of
Nottingham
We have seen that the numerical calculation of an integral can be generalise
function evaluations:**

$$
I = \int_{a}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i
$$

where w_i is the weight coefficient that multiplies the value of the function at a given point x_i . **is the weight coefficient that multiplies the value of the function at a given point** x_i **.**
 is the weight coefficient that multiplies the value of the function at a given point x_i **.**
 is the weight coefficient that m EXECUTE:

Rather than using fixed points on the numerical calculation of an integral can be generalised as a **series** of

function evaluations:
 $I = \int_{a}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i$

where w_i is the weight coefficient Specific positions,

Specific positions,

We have seen that the numerical calculation of an integral can be generalised as a series of

function evaluations:
 $I = \int_{a}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i$

where w_i is the weight **Caussian quadrature**
We have seen that the numerical calculation of an integral can be generalised as a **series** of
function evaluations:
 $I = \int_{a}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i$
where w_i is the weight coefficient that mult We have seen that the numerical calculation of an integral can be generalised as a **series** of

function evaluations:
 $I = \int_{a}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i$

where w_i is the weight coefficient that multiplies the value of We have seen that the numerical calculation of an integral

function evaluations:
 $I = \int_{a}^{b} f(x) dx \approx h \sum_{i=1}^{n} f(x_i) w_i$

where w_i is the weight coefficient that multiplies the value of

Rather than using fixed points on

7

Gaussian quadrature

$$
I = \int_{-1}^{+1} f(x) dx \cong \sum_{g=1}^{G} f(x_g) w_g
$$

The range of integration is from -1 to +1. If the

integral has different limits, a linear transformation

of the independent variable is required (see notes).

Example: 4-points Gaussian quality of the independent variab

-
- For a fixed number of function evaluations, the Gaussian quadrature has error $O(f^{(2G)})$, and
therefore it is exact for polynomials of order up to $(2G 1)$. The range of integration is from -1 to +1. If the
integral has different limits, a linear transformation
of the independent variable is required (see notes).
The function is evaluated at the gaussian points x_g . At these $^{(2G)}$), and Find range of imagination is form-1 to 4.1 if and
integral has different limits, a linear transformation
of the independent variable is required (see notes).
Example: 4 polnts Gaussian quadrature scheme
> The function is
-

F

Gaussian quadrature - Example = ^න = ^න 2 + 3 ଵ ିଵ ⁼ − 3 2 + 3 3 ିଵ ଵ = −0.157379

$$
I = \int_{-1}^{1} \frac{1}{(3x+5)^2} dx = \left[\frac{-1}{3(3x+5)}\right]_{-1}^{1} = 0.125
$$

Example: 4-po

ଵ -1

 $= f(-0.86111363)(0.3478548) + f(-0.3399810)(0.6521452) + f(0.8611363)(0.3478548) + f(0.3399810)(0.6521452)$

10

Gaussian quadrature – Multidimensional integrals

**Caussian quadrature – Multidimensional integrals

Gaussian quadrature can be easily extended to evaluate integrals in 2D or 3D by employing

nested summations, for instance (2D): Example 19 and Sample 10 and Sample 10**

**3 Noting
Caussian quadrature can be easily extended to evaluate integrals in 2D or 3D by employing
nested summations, for instance (2D):

$$
I = \int_{-1}^{+1} \left(\int_{-1}^{+1} f(x, y) dx \right) dy \approx \sum_{g2=1}^{G2} \left(\sum_{g1=1}^{G1} f(x_{g1}, y_{g2}) w_{g1} \right) w_{g2}
$$

where the number of points *G1* and *G2* for each summation loop may be different.
Similarly, the scheme can be extended to functions of 3 variables.**

- **Multiple on the continuum of the University of Allian Superior Allian Superior Allian Superior Superior What to take home from today's lecture**
 What to take home from today's lecture
 \triangleright Working principles of trap Working ham **Numerical Methods — L5**
What to take home from today's lecture
> Working principles of trapezoidal, Simpson's and Gaussian quadrature methods
> Discretised version of the integral based on each method **Problem and Summerical Methods - L5**

What to take home from today's lecture

> Working principles of trapezoidal, Simpson's and Gaussian quadrature methods

> Discretised version of the integral based on each method

> O **CORDER ORIGINAL SET CONCRETE:**

ORDER OF CONVERGENCE OF EACH method and its implications
 \triangleright Orde
-
-
-