

Computer Modelling Techniques

Numerical Methods Lecture 5: Numerical Integration

Mirco Magnini

University of Nottingham Why do we need numerical integration?

For instance, we want to know the volumetric flow rate *Q* exiting a pipe:

The numerical evaluation of the integral has to be accurate and fast

Most popular methods:

> Trapezoidal rule

10

- Simpson's rule
- Gaussian quadrature

University of Nottingham Numerical Methods – L5

Today's menu

- Trapezoidal rule
- Simpson's rule
- Gaussian quadrature

Expected outcome: know how to perform numerical integration of functions;

know advantages/limitations of each method; know how to implement each

method.

University of Nottingham UK | CHINA | MALAYSIA Numerical integration

Our task:

4

University of Nottingham UK I CHINA I MALAYSIA Trapezoidal rule

We perform *n* function evaluations at discrete points $x_1 \equiv a, x_2, x_3, ..., x_n \equiv b$. We divide [a,b] into n - 1 segments, each segment containing two consecutive function evaluations. Within each segment, we approximate the function as a straight line. The integral is calculated within each segment as the area of the trapezium bounded between the straight line and the x-axis:

$$I_1 = \int_{x_1}^{x_2} f(x) dx \cong \frac{1}{2} [f(x_1) + f(x_2)](x_2 - x_1)$$

With *n* function evaluations, we have n - 1 segments of width $h \equiv (x_2 - x_1) = (b - a)/(n - 1)$. The integral becomes a series of terms:

University of Nottingham UK | CHINA | MALAYSIA Not CHINA | MALAYSIA

The curve is now approximated by a **parabola** evaluated at **3 points**, instead of a straight line. The integral of the function between three consecutive points is:

$$I_1 = \int_{x_1}^{x_3} f(x) dx \cong \frac{h}{3} [f(x_1) + 4f(x_2) + f(x_3)]$$

where $h \equiv (b - a)/(n - 1)$. With *n* function evaluations, the integral becomes a series of terms:

$$I = \int_{a=x_{1}}^{b=x_{n}} f(x)dx \cong \frac{h}{3}[f(x_{1}) + 4f(x_{2}) + 2f(x_{3}) + 4f(x_{4}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})] = \frac{h}{3}\left[f(x_{1}) + \sum_{\substack{i=2, \\ i:even}}^{n-1} 4f(x_{i}) + \sum_{\substack{i=3, \\ i:odd}}^{n-2} 2f(x_{i}) + f(x_{n})\right]$$

It can be demonstrated that the error is $O\left[\frac{(b-a)^{5}}{n^{4}}f^{(iv)}\right]$

University of Nottingham UK I CHINA I MALAYSIA Gaussian quadrature

h

We have seen that the numerical calculation of an integral can be generalised as a series of

function evaluations:

10

$$I = \int_{a}^{b} f(x)dx \cong h \sum_{i=1}^{n} f(x_i) w_i$$

where w_i is the weight coefficient that multiplies the value of the function at a given point x_i . Rather than using fixed points on the curve, the **Gaussian quadrature** evaluates the function at **specific positions**, so that when the function evaluations are multiplied by **carefully chosen weight coefficients**, it results in the most accurate evaluation of the integral.

The points on the curve are carefully chosen so that the **area above the curve 'balances' the area below the curve**.

Gaussian quadrature

$$I = \int_{-1}^{+1} f(x) dx \cong \sum_{g=1}^{G} f(x_g) w_g$$

University of Nottingham

The range of integration is from -1 to +1. If the integral has different limits, a linear transformation of the independent variable is required (see notes).

- > The function is evaluated at the **gaussian points** x_g . At these coordinates, $f(x_g)$ is multiplied by a specific **weight coefficient** w_g and the products added together to calculate the integral.
- ➤ For a fixed number of function evaluations, the Gaussian quadrature is the **most accurate** integration scheme. Given *G* gaussian points, the Gaussian quadrature has error $O(f^{(2G)})$, and therefore it is exact for polynomials of order up to (2G 1).
- \blacktriangleright Accuracy can be improved increasing G, at a higher cost of computational time.

17

Gaussian points coordinates and related weights for G up to 5

	Gaussian Coordinate	Weight Function	
n = 2			
	-0.5773502691896257	1.0	
	0.5773502691896257	1.0	
n = 3			
	0.0	0.8888888888888888888888888888888888888	
	-0.7745966692414834	0.555555555555555	
	0.7745966692414834	0.5555555555555556	
n = 4			
	-0.3399810435848563	0.6521451548625461	
	0.3399810435848563	0.6521451548625461	
	-0.8611363115940526	0.3478548451374538	
	0.8611363115940526	0.3478548451374538	
n = 5			
	0.0	0.56888888888888888	
	-0.5384693101056831	0.4786286704993665	
	0.5384693101056831	0.4786286704993665	
	-0.9061798459386640	0.2369268850561891	
	0.9061798459386640	0.2369268850561891	

Gaussian quadrature - Example

$$I = \int_{-1}^{1} \frac{x}{\sqrt{2x+3}} dx = \left[\frac{(x-3)\sqrt{2x+3}}{3}\right]_{-1}^{1} = -0.157379$$

$$I = \int_{-1}^{1} \frac{1}{(3x+5)^2} dx = \left[\frac{-1}{3(3x+5)}\right]_{-1}^{1} = 0.125$$

University of Nottingham

Example: 4-points Gaussian quadrature scheme

Gaussian Coordinate	Weight Function ^W g	$f(x) = 1 / (3x+5)^2$		$f(x) = x / (2x+3)^{0.5}$	
X _g		f(x _g)	f(xg) wg	f(xg)	$f(x_g) w_g$
-0.8611363	0.3478548	0.1712354	0.0595651	-0.7618207	-0.2650030
-0.3399810	0.6521452	0.0631279	0.0411686	-0.2232066	-0.1455631
0.8611363	0.3478548	0.0173889	0.0060488	0.3962747	0.1378461
0.3399810	0.6521452	0.0275940	0.0179953	0.1772283	0.1155786
		$\Sigma f(x_g) w_g = 0.1247778$		$\Sigma f(x_g) w_g = -0.1571415$	

 $I = \int_{-1}^{1} f(x)dx = f(x_1)w_1 + f(x_2)w_2 + f(x_3)w_3 + f(x_4)w_4 =$

= f(-0.86111363)(0.3478548) + f(-0.3399810)(0.6521452) + f(0.8611363)(0.3478548) + f(0.3399810)(0.6521452)

Gaussian quadrature – Multidimensional integrals

Gaussian quadrature can be easily extended to evaluate integrals in **2D or 3D** by employing **nested summations**, for instance (2D):

$$I = \int_{-1}^{+1} \left(\int_{-1}^{+1} f(x, y) dx \right) dy \cong \sum_{g^2 = 1}^{G^2} \left(\sum_{g^{1} = 1}^{G^1} f(x_{g^1}, y_{g^2}) w_{g^1} \right) w_{g^2}$$

where the number of points G1 and G2 for each summation loop may be different.

Similarly, the scheme can be extended to functions of 3 variables.

University of Nottingham

10

What to take home from today's lecture

- Working principles of trapezoidal, Simpson's and Gaussian quadrature methods
- Discretised version of the integral based on each method
- Order of convergence of each method and its implications
- Advantages/limitations of each method