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Why do we need numerical integration?

For instance, we want to know the volumetric flow rate 𝑄 exiting a pipe: 

The numerical evaluation of the integral has to be accurate and fast

Most popular methods:

 Trapezoidal rule

 Simpson’s rule

 Gaussian quadrature
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Numerical Methods – L5

Today’s menu

 Trapezoidal rule

 Simpson’s rule

 Gaussian quadrature

Expected outcome: know how to perform numerical integration of functions; 

know advantages/limitations of each method; know how to implement each

method.
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Numerical integration

Our task:

Calculate the integral as accurately as possible with

the smallest number of evaluations of the integrand
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Trapezoidal rule

We perform 𝑛 function evaluations at discrete points 𝑥ଵ ≡ 𝑎, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡ ≡ 𝑏. We divide [a,b] into

𝑛 − 1 segments, each segment containing two consecutive function evaluations. Within each

segment, we approximate the function as a straight line. The integral is calculated within each

segment as the area of the trapezium bounded between the straight line and the x-axis:
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With 𝑛 function evaluations, we have 𝑛 − 1 segments of width ℎ ≡ 𝑥ଶ − 𝑥ଵ = (𝑏 − 𝑎)/(𝑛 − 1). 

The integral becomes a series of terms: 

It can be demonstrated that the error is 𝑂
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Simpson’s rule

The curve is now approximated by a parabola evaluated at 3 points, instead of a straight line. 

The integral of the function between three consecutive points is:
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where ℎ ≡ (𝑏 − 𝑎)/(𝑛 − 1). With 𝑛 function evaluations, the integral becomes a series of terms: 

It can be demonstrated that the error is 𝑂
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Gaussian quadrature

We have seen that the numerical calculation of an integral can be generalised as a series of 

function evaluations:

where 𝑤௜ is the weight coefficient that multiplies the value of the function at a given point 𝑥௜.

Rather than using fixed points on the curve, the Gaussian quadrature evaluates the function at 

specific positions, so that when the function evaluations are multiplied by carefully chosen

weight coefficients, it results in the most accurate evaluation of the integral.  

The points on the curve are carefully chosen so that the area above the curve ‘balances’ the 

area below the curve.
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Trapezoidal method Gaussian quadrature
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Gaussian quadrature

 The range of integration is from -1 to +1. If the 

integral has different limits, a linear transformation 

of the independent variable is required (see notes).
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Example: 4-points Gaussian quadrature scheme

 The function is evaluated at the gaussian points 𝑥௚. At these coordinates, 𝑓 𝑥௚ is multiplied

by a specific weight coefficient 𝑤௚ and the products added together to calculate the integral.

 For a fixed number of function evaluations, the Gaussian quadrature is the most accurate

integration scheme. Given 𝐺 gaussian points, the Gaussian quadrature has error 𝑂 𝑓(ଶீ) , and 

therefore it is exact for polynomials of order up to (2𝐺 − 1).

 Accuracy can be improved increasing 𝐺, at a higher cost of computational time.



9

Gaussian quadrature

Gaussian points coordinates and related weights for G up to 5
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Gaussian quadrature - Example

𝐼 = න
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ଵ

ିଵ

= 𝑓 𝑥ଵ 𝑤ଵ + 𝑓 𝑥ଶ 𝑤ଶ + 𝑓 𝑥ଷ 𝑤ଷ + 𝑓 𝑥ସ 𝑤ସ =

= 𝑓 −0.86111363 (0.3478548) + 𝑓 −0.3399810 (0.6521452) + 𝑓 0.8611363 (0.3478548) + 𝑓 0.3399810 (0.6521452)

Example: 4-points Gaussian quadrature scheme
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Gaussian quadrature – Multidimensional integrals

Gaussian quadrature can be easily extended to evaluate integrals in 2D or 3D by employing

nested summations, for instance (2D):

where the number of points 𝐺1 and 𝐺2 for each summation loop may be different.

Similarly, the scheme can be extended to functions of 3 variables.
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Numerical Methods – L5

What to take home from today’s lecture

 Working principles of trapezoidal, Simpson’s and Gaussian quadrature methods

 Discretised version of the integral based on each method

 Order of convergence of each method and its implications

 Advantages/limitations of each method


